Three Term Controller

- Most popular industrial controller
- •Can handle any industrial plant easily and satisfactorily
- •Three gain controller $[K_P K_D K_I]$ or $[K_P T_D T_I]$
- •**^P**roportional, **D**erivative, and **I**ntegral control actions
- •Weighted sum of three terms using gains

Error due to Persistent Disturbances

• At equilibrium state

$$
K_{P}e_{ss} + d = 0
$$

$$
e_{ss} = -\frac{d}{K_{P}}
$$

P controller alone
cannot eliminate the steady state error

• Introduce an I-controller. Then, at equilibrium state

$$
K_p e(t) + K_I \int e(t)dt + d = 0
$$

$$
e(t) = 0 \text{ and } \int e(t)dt = -d
$$

9. PID Controller EN2142 Electronic Control Systems

Dr. Rohan MunasingheBSc, MSc, PhD, MIEEE Department of Electronic and Telecommunication EngineeringFaculty of EngineeringUniversity of Moratuwa 10400

Proportional Term

- Determines the **responsiveness** of the controller •
	- Aggressive/Weak
	- Increase/Decrease system bandwidth

 $e(t) = r(t) - y(t)$

- •Positive command when $r(t) > y(t)$
- Negative command when•
- K_P is very BIG
	- Controller is sensitive
	- Responds to even small errors)
- • K_{P} is very small
	- Controller is not sensitive
	- Respond only to BIG errors

Both extremes are not acceptable

Example

 $K_p = 25, M = 3$ kg • Robot link position P-control system

D - Controller

- Corrective action is proportional to the rate of change of error $\dot{e}(t) = \dot{r}(t) - \dot{y}(t)$
- For constant reference $\dot{r}(t) = 0$ and •

Improves Stability

Improves Stability

- If a **negative error is dropping faster** (**unstable?**), strong positive action is taken to stop and correct it
- If a **positive error is rising faster** (**unstable?**), strong negative action is taken
- • When the error doesn't change, no control action is taken (doesn't try to correct steady errors)

I Controller

- Can eliminate steady state error
- If $y(t) < r(t)$ then $e(t) > 0$ $u_t(t) = \int e(t)dt > 0$ drives $y(t) \rightarrow r(t)$

- Caution: Error accumulation together, with a BIG value of K_{I} could generate large control commands causing response *y*(*t*)to overshoot/undershoot (stability problem)
	- Reduce $K_I (= K_P / T_I)$ to reduce overshoot but it will take time to partner that the critical vector of the to correct steady state errors

Tuning PD Gains in Motion Control

When K_p is too Low

Tuning PID Controller

- Best match between $[K _p \ K _{\overline{D}} \ K _I]$ or $[K _p \ T _{\overline{D}} \ T _I]$
- • \cdot K_P makes the system responsive to errors, however, a bigger value of K_P will make the system too sensitive, and responsive to even noise in the control loop. K_i reduces the steady state error, however, it increases overshoot and reduces stability. K_D stabilizes the system by slowing $\frac{1}{2}$ down the response.
- \bullet In order to realize desirable response the three individual controllers have to be properly adjusted
- • There are three main techniques for PID controller tuning
	- Zeigler-Nichols
	- Cohen-Coon
	- ITAE based methods

When K_D is too High

Ziegler-Nochols Method

- Frequency response of the plant is required
- Plant needs to have a crossover frequency f_{co} and stable gain margin Gm_{co}

Ziegler-Nochols Method

