Three Term Controller

- Most popular industrial controller
- · Can handle any industrial plant easily and satisfactorily
- Three gain controller $[K_P K_D K_I]$ or $[K_P T_D T_I]$
- Proportional, Derivative, and Integral control actions
- Weighted sum of three terms using gains

Error due to Persistent Disturbances

At equilibrium state

$$K_{P}e_{ss} + d = 0$$
$$e_{ss} = -\frac{d}{K_{P}}$$

P controller alone cannot eliminate the steady state error

• Introduce an I-controller. Then, at equilibrium state

$$K_p e(t) + K_I \int e(t)dt + d = 0$$

$$e(t)=0$$
 and $\int e(t)dt=-d$

9. PID Controller EN2142 Electronic Control Systems

Dr. Rohan Munasinghe BSc, MSc, PhD, MIEEE Department of Electronic and Telecommunication Engineering Faculty of Engineering University of Moratuwa 10400

Proportional Term

- Determines the responsiveness of the controller
 - Aggressive/Weak
 - Increase/Decrease system bandwidth

e(t) = r(t) - y(t)

- Positive command when r(t) > y(t)
- Negative command when r(t) < y(t)
- K_P is very BIG
 - Controller is sensitive
 - Responds to even small errors)
- K_P is very small
 - Controller is not sensitive
 - Respond only to BIG errors

Both extremes are not acceptable

Example

• Robot link position P-control system $\begin{array}{c} K_p=25,\,M=3\mathrm{kg}\\ L=1\mathrm{m},\,g=9.8\mathrm{ms}^{-2} \end{array}$

D - Controller

- Corrective action is proportional to the rate of change of error $\dot{e}(t) = \dot{r}(t) \dot{y}(t)$
- For constant reference $\dot{r}(t) = 0$ and $u_D(t) = -K_D \dot{y}(t)$

Improves Stability

- If a negative error is dropping faster (unstable?), strong positive action is taken to stop and correct it
- If a **positive error is rising faster** (**unstable?**), strong negative action is taken
- When the error doesn't change, no control action is taken (doesn't try to correct steady errors)

I Controller

- Can eliminate steady state error
- If y(t) < r(t) then e(t) > 0 $u_1(t) = \int e(t)dt > 0$ drives $y(t) \rightarrow r(t)$

- Caution: Error accumulation together, with a BIG value of K_I could generate large control commands causing response y(t) to overshoot/undershoot (stability problem)
 - Reduce $K_I (= K_P / T_I)$ to reduce overshoot but it will take time to correct steady state errors

Tuning PD Gains in Motion Control

When K_D is too Low

Tuning PID Controller

- Best match between $[K_P K_D K_I]$ or $[K_P T_D T_I]$
- *K_P* makes the system responsive to errors, however, a bigger value of *K_P* will make the system too sensitive, and responsive to even noise in the control loop. *K_I* reduces the steady state error, however, it increases overshoot and reduces stability. *K_D* stabilizes the system by slowing down the response.
- In order to realize desirable response the three individual controllers have to be properly adjusted
- · There are three main techniques for PID controller tuning
 - Zeigler-Nichols
 - Cohen-Coon
 - ITAE based methods

When K_D is too High

Ziegler-Nochols Method

- Frequency response of the plant is required
- Plant needs to have a crossover frequency ^{|G} f_{co} and stable gain margin Gm_{co}

Ziegler-Nochols Method

$\operatorname{controller}$	K_P	K_I	K_D	T_I	T_D
Р	0.5GM	-	-	-	-
PI	0.45GM	$1.2 \frac{K_P}{T_{co}}$	-	$0.8T_{co}$	-
PID	0.6GM	$2\frac{K_P}{T_{co}}$	$0.125 \ K_P T_{co}$	$0.5 T_{co}$	$0.125 T_{co}$